试题 试卷
题型:单选题 题类:常考题 难易度:困难
浙江省宁波市鄞州实验中学2022-2023学年八年级上学期数学期末试卷
如图,正方形ABCD的周长为12,△ABE是等边三角形,点E在正方形ABCD内,对角线AC上有一点P,使PD+PE的和最小,则这个最小值为( )
如图,AB∥CD,直线EF分别交AB、CD于点E、F,EG平分∠AEF,∠1=35º,那么∠2={#blank#}1{#/blank#} 度.
“如图,ABCD是正方形,点E在BC上,DF⊥AE于F,请问图中是否存在一组全等三角形?”
小杰同学经过思考发现:△ADF≌△EAB.
理由如下:因为ABCD是正方形(已知)
所以∠B=90°且AD=AB和AD∥BC
又因为DF⊥AE(已知)
即∠DFA=90°(垂直的意义)
所以∠DFA=∠B(等量代换)
又AD∥BC
所以∠1=∠2(两直线平行,内错角相等)
在△ADF和△EAB中
所以△ADF≌△EAB(AAS)
小胖却说这题是错误的,这两个三角形根本不全等.
你知道小杰的错误原因是什么吗?我们再添加一条线段,就能找到与△ADF全等的三角形,请能说出此线段的做法吗?并说明理由.
试题篮