试题 试卷
题型:多选题 题类:常考题 难易度:普通
福建省厦门市2019-2020学年高一下学期数学期末考试试卷
(I)求证:MN∥平面ABCD;
(II)求二面角D1﹣AC﹣B1的正弦值.
(Ⅰ)若N为线段DC1上的点,且直线MN∥平面ADB1A1 , 试确定点N的位置;
(Ⅱ)求平面MAD与平面CC1D所成的锐二面角的余弦值.
= AC,现沿DE将△ADE折起,折起过程中点A仍然记作点A,使得平面ADE⊥平面BCED,在折起后的图形中.
(I)在AC上是否存在点M,使得直线ME∥平面ABD.若存在,求出点M的位置;若不存在,说明理由.
(Ⅱ)求平面ABD与平面ACE所成锐二面角的余弦值.
(Ⅰ)求证:MN∥平面PAD;
(Ⅱ)求二面角B﹣AM﹣C的大小;
(Ⅲ)在BC上是否存在点E,使得EN⊥平面AMN?若存在,求 的值;若不存在,请说明理由.
试题篮