试题

试题 试卷

logo

题型:解答题 题类:常考题 难易度:普通

列举法计算基本事件数及事件发生的概率++340

某高校在2016年的自主招生考试成绩中随机抽取40名学生的笔试成绩,按成绩共分成五组:第1组[75,80),第2组[80,85),第3组[85,90),第4组[90,95),第5组[95,100],得到的频率分布直方图如图所示,同时规定成绩在85分以上的学生为“优秀”,成绩小于85分的学生为“良好”,且只有成绩为“优秀”的学生才能获得面试资格.

(1)、求出第4组的频率;
(2)、根据样本频率分布直方图估计样本的中位数;
(3)、如果从“优秀”和“良好”的学生中分别选出3人与2人,再从这5人中选2人,那么至少有一人是“优秀”的概率是多少?
举一反三

2015年7月9日21时15分,台风“莲花”在我国广东省陆丰市甲东镇沿海登陆,造成165.17万人受灾,5.6万人紧急转移安置,288间房屋倒塌,46.5千公顷农田受灾,直接经济损失12.99亿元.距离陆丰市222千米的梅州也受到了台风的影响,适逢暑假,小明调查了梅州某小区的50户居民由于台风造成的经济损失,将收集的数据分成[0,2000],(2000,4000],(4000,6000],(6000,8000],(8000,10000]五组,并作出如下频率分布直方图:

(Ⅰ)试根据频率分布直方图估计小区平均每户居民的平均损失(同一组中的数据用该组区间的中点值作代表);

(Ⅱ)小明向班级同学发出倡议,为该小区居民捐款.现从损失超过4000元的居民中随机抽出2户进行捐款援助,设抽出损失超过8000元的居民为ξ户,求ξ的分布列和数学期望;

(Ⅲ)台风后区委会号召小区居民为台风重灾区捐款,小明调查的50户居民捐款情况如表,根据表格中所给数据,分别求b,c,a+b,c+d,a+c,b+d,a+b+c+d的值,并说明是否有95%以上的把握认为捐款数额多于或少于500元和自身经济损失是否到4000元有关?


经济损失不超过

4000元

经济损失超过

4000元

合计

捐款超过

500元

a=30

b


捐款不超

过500元

c

d=6


合计





P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

附:临界值表参考公式:, , a+b+c+d.

返回首页

试题篮