试题 试卷
题型:综合题 题类:真题 难易度:困难
湖南省湘潭市2020年中考数学试卷
①求抛物线的解析式;
②对称轴上是否存在一点P,使点B关于直线 的对称点 恰好落在对称轴上.若存在,请求出点P的坐标;若不存在,请说明理由.
如图,把一个长方形纸片沿EF折叠后,点D,C分别落在D′,C′的位置.若∠AED′=40°,则∠EFB等于( )
如图,在平面直角坐标系中,二次函数y=+bx+c的图象与x轴交于A、B两点, A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,-3)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的表达式.(2)连结PO、PC,并把△POC沿CO翻折,得到四边形POP’C,那么是否存在点P,使四边形POP’C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.(3)当点P运动到什么位置时,四边形 ABPC的面积最大并求出此时P点的坐标和四边形ABPC的最大面积.
试题篮