试题 试卷
题型:单选题 题类:真题 难易度:普通
浙江省嘉兴市、舟山市2020年中考数学试卷
①以点A为圆心,适当的长度为半径作弧,分别交AB,AC于点E,F,再分别以点E,F为圆心,大于 EF的长为半径作弧相交于点H,作射线AH;②分别以点A,B为圆心,大于 AB的长为半径作弧相交于点M,N,作直线MN,交射线AH于点0;③以点为圆心,线段OA长为半径作圆。则⊙O的半径为( )
小兵的证明思路是:如图2,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE=CF.
小鹏的证明思路是:如图2,过点P作PG⊥CF,垂足为G,先证△GPC≌△ECP,可得:PE=CG,而PD=GF,则PD+PE=CF.
请运用上述中所证明的结论和证明思路完成下列两题:
操作与探究:在图②,图③的矩形ABCD中,AB=4,BC=8点E、F分别在BC、CD边上,试利用正方形网格分别作出两图中矩形ABCD的反射四边形EFGH,并求出每个反射四边形EFGH的周长.
试题篮