试题
试题
试卷
登录
注册
当前位置:
首页
题型:解答题
题类:常考题
难易度:普通
导数在最大值、最小值问题中的应用
已知函数f(x)=lnx﹣kx+1.
(1)、
求函数f(x)的单调区间;
(2)、
若f(x)≤0恒成立,试确定实数k的取值范围;
(3)、
证明:
.
举一反三
设函数f(x)=
.
定义域为R的函数f(x)对任意x∈R都有f(x)=f(4﹣x),且其导函数f′(x)满足(x﹣2)f′(x)>0,则当2<a<4时,有( )
为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层,某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为3万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=
(0≤x≤10),若不建隔热层,每年能源消耗费用为4万元.设f(x)为隔热层建造费用与20年的能源消耗费用之和.
函数
的递减区间是( )
已知函数
,存在
,
,则
的最大值为{#blank#}1{#/blank#}.
已知函数
(其中
)
返回首页
相关试卷
广东省汕头市2024-2025学年高三上学期12月期末教学质量监测数学试题
吉林省白城市第一中学2024-2025学年高二上学期12月期末考试数学试题
2025年1月普通高等学校招生全国统一考试适应性测试(八省联考)数学试题
广东省江门市新会第一中学2024-2025学年高二上学期期末考试数学试题
浙江省宁波市镇海中学2024-2025学年高一上学期期末考试数学试卷
试题篮
编辑
生成试卷
取消
登录
x
请输入网站账号/手机号码/邮箱
请输入密码
自动登录
忘记密码
登录
其它登录方式:
免费注册