题型:填空题 题类:常考题 难易度:容易
独立性检验
y1 | y2 | 合计 | |
x1 | a | 21 | 73 |
x2 | 22 | 25 | 47 |
合计 | b | 46 | 120 |
非一线 | 一线 | 总计 | |
愿生 | 45 | 20 | 65 |
不愿生 | 13 | 22 | 35 |
总计 | 58 | 42 | 100 |
附表:
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
由K2= 算得,K2= ≈9.616参照附表,得到的正确结论是( )
(Ⅰ)现从甲品牌日销量大于40且小于60的样本中任取两天,求这两天都是“畅销日”的概率;
(Ⅱ)用抽取的样本估计这100天的销售情况,请完成这两种品牌100天销量的2×2列联表,并判断是否有99%的把握认为品牌与“畅销日”天数有关.
附:K2=
P(K2≥k0) | 0.050 | 0.010 | 0.001 |
k0 | 3.841 | 6.635 | 10.828 |
畅销日天数 | 非畅销日天数 | 合计 | |
甲品牌 | |||
乙品牌 | |||
合计 |
房屋面积m2 | 110 | 90 | 80 | 100 | 120 |
销售价格(万元) | 33 | 31 | 28 | 34 | 39 |
日均看电视时间(单位:小时) |
|
|
|
|
|
|
频率 | 0.1 | 0.18 | 0.22 | 0.25 | 0.20 | 0.05 |
将日均看电视时间不低于4小时的市民称为“电视迷”,已知“电视迷”中有15名女性.
(Ⅰ)根据已知条件完成下面 列联表,并据此资料判断是否有90%的把握认为“电视迷”与性别有关?
非电视迷 | 电视迷 | 合计 | |
男 | |||
女 | |||
合计 |
(Ⅱ)现从“电视迷”市民中按分层抽样的方法抽取5位市民,再从中随机抽取3人赠送礼品,试求抽取3人中恰有2位女性市民的概率.
参考公式: ,其中 .
参考数据:
| 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
| 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
试题篮