试题 试卷
题型:计算题 题类:常考题 难易度:普通
一元一次方程+—+含绝对值符号的一元一次方程(普通)
在解形如3|x﹣2|=|x﹣2|+4这一类含有绝对值的方程时,我们可以根据绝对值的意义分x<2和x≥2两种情况讨论:
①当x<2时,原方程可化为﹣3(x﹣2)=﹣(x﹣2)+4,解得:x=0,符合x<2
②当x≥2时,原方程可化为3(x﹣2)=(x﹣2)+4,解得:x=4,符合x≥2
∴原方程的解为:x=0,x=4.
解题回顾:本题中2为x﹣2的零点,它把数轴上的点所对应的数分成了x<2和x≥2两部分,所以分x<2和x≥2两种情况讨论.
知识迁移:
定义:我们把绝对值符号内含有未知数的方程叫做“含有绝对值的方程”.
如:|x|=2,|2x﹣1|=3,| |﹣x=1,…都是含有绝对值的方程.
怎样求含有绝对值的方程的解呢?基本思路是:含有绝对值的方程→不含有绝对值的方程.
我们知道,根据绝对值的意义,由|x|=2,可得x=2或x=﹣2.
试题篮