试题 试卷
题型:解答题 题类:常考题 难易度:普通
2016-2017学年湖北省仙桃中学高二上学期期中数学试卷
(Ⅰ)求证:AB⊥平面PAC;
(Ⅱ)求证:AQ∥平面PCD.
已知四边形ABCD是矩形,AB=1,AD=2,E,F分别是线段AB,BC的中点,PA⊥平面ABCD.
(1)求证:DF⊥平面PAF;
(2)若∠PBA=45°,求三棱锥C﹣PFD的体积;
(3)在棱PA上是否存在一点G,使得EG∥平面PFD,若存在,请求出的值,若不存在,请说明理由.
(Ⅰ)证明:AC⊥D1E;
(Ⅱ)求DE与平面AD1E所成角的正弦值;
(Ⅲ)在棱AD上是否存在一点P,使得BP∥平面AD1E?若存在,求DP的长;若不存在,说明理由.
试题篮