试题
试题
试卷
登录
注册
当前位置:
首页
题型:单选题
题类:常考题
难易度:普通
表面积为3π的圆锥,它的侧面展开图是一个半圆,则该圆锥的底面半径为( )
A、
B、
C、
2
D、
1
举一反三
已知圆锥体的底面半径为R,高为H求内接于这个圆锥体并且体积最大的圆柱体的高h(如图).
圆锥的底面半径为5cm,高为12cm,当它的内接圆柱的底面半径为{#blank#}1{#/blank#} 时,圆锥的内接圆柱全面积有最大值.
在△ABC中,AB=2,BC=1.5,∠ABC=120°,若使该三角形绕直线BC旋转一周,则所形成的几何体的体积是( )
已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )
下图是由哪个平面图形旋转得到的( )
18世纪英国数学家辛卜森运用定积分,推导出了现在中学数学教材中柱、锥、球、台等几何体
的统一体积公式
(其中
,
,
,
分别为
的上底面面积、下底面面积、中截面面积和高),我们也称为“万能求积公式”.例如,已知球的半径为
, 可得该球的体积为
;已知正四棱锥的底面边长为
, 高为
, 可得该正四棱锥的体积为
.类似地,运用该公式求解下列问题:如图,已知球
的表面积为
, 若用距离球心
都为1cm的两个平行平面去截球
, 则夹在这两个平行平面之间的几何体
的体积为{#blank#}1{#/blank#}
.
返回首页
相关试卷
高一数学上学期人教A版必修第一册期中考训练卷
2025高考一轮复习(人教A版)第六讲函数的概念及其表示
2024年高考真题分类汇编九 导数在函数中的应用
2024年高考真题分类汇编九 空间向量与立体几何
2024年高考真题分类汇编八 平面解析几何
试题篮
编辑
生成试卷
取消
登录
x
请输入网站账号/手机号码/邮箱
请输入密码
自动登录
忘记密码
登录
其它登录方式:
免费注册