试题 试卷
题型:解答题 题类:真题 难易度:困难
如图,2×2网格(每个小正方形的边长为1)中,有A,O,B,C,D,E,F,H,G九个格点.抛物线l的解析式为y=x2+bx+c.
(1)若l经过点O(0,0)和B(1,0),则b= , c= ;它还经过的另一格点的坐标为 .
(2)若l经过点H(﹣1,1)和G(0,1),求它的解析式及顶点坐标;通过计算说明点D(1,2)是否在l上.
(3)若l经过这九个格点中的三个,直接写出所有满足这样的抛物线的条数.
如图1,点E为矩形ABCD边AD上一点,点P,点Q同时从点B出发,点P沿BE→ED→DC 运动到点C停止,点Q沿BC运动到点C停止,它们运动的速度都是1cm/s,设P,Q出发t秒时,△BPQ的面积为ycm2 , 已知y与t的函数关系的图形如图2(曲线OM为抛物线的一部分),则下列结论:①AD=BE=5cm;②当0<t≤5时,;③直线NH的解析式为;④若△ABE与△QBP相似,则t=秒。其中正确的结论个数为( )
如图,抛物线y=x2+x﹣与x轴相交于A、B两点,顶点为P.
(1)求点A、B的坐标;
(2)在抛物线是否存在点E,使△ABP的面积等于△ABE的面积?若存在,求出符合条件的点E的坐标;若不存在,请说明理由;
(3)坐标平面内是否存在点F,使得以A、B、P、F为顶点的四边形为平行四边形?直接写出所有符合条件的点F的坐标.
已知:如图,二次函数y=ax2+bx+c的图象与x轴交于A,B两点,其中A点坐标为(﹣1,0),点C(0,5),另抛物线经过点(1,8),M为它的顶点.
试题篮