试题
试题
试卷
登录
注册
当前位置:
首页
题型:单选题
题类:常考题
难易度:普通
设函数f(x)在R上存在导函数f′(x),对∀x∈R,f(﹣x)+f(x)=x
2
, 且在(0,+∞)上,f′(x)>x.若有f(2﹣a)﹣f(a)≥2﹣2a,则实数a的取值范围为( )
A、
(﹣∞,1]
B、
[1,+∞)
C、
(﹣∞,2]
D、
[2,+∞)
举一反三
已知函数f(x)是定义域为R的奇函数,且f(-5)=-1,f(x)的导函数
的图象如图所示。若正数a满足
, 则
的取值范围是( )
设
、
分别是定义在R上的奇函数和偶函数。当
时,
且
。则不等式
的解集是( )
已知
是定义在
上的可导函数,若在
上
有恒成立,且
为自然对数的底数),则下列结论正确的是( )
已知函数
的图象是下列四个图象之一,且其导函数
的图象如图所示,则该函数的图象可能是( )
已知函数
,则
的导函数
的图象大致是( )
设f(x)=(1﹣m)lnx+
+nx(m,n是常数).
返回首页
相关试卷
四川省泸县第二中学2024-2025学年高一上学期1月期末数学试题
浙江省杭州市部分学校2025届高三上学期期末联考数学试题
湖南省长沙市长郡中学2024-2025学年高一上学期1月期末考试数学试题
湖南省长沙市第一中学2024-2025学年高三上学期阶段性检测(五)数学试题
广东省汕头市2024-2025学年高三上学期12月期末教学质量监测数学试题
试题篮
编辑
生成试卷
取消
登录
x
请输入网站账号/手机号码/邮箱
请输入密码
自动登录
忘记密码
登录
其它登录方式:
免费注册