题型:阅读理解 题类:常考题 难易度:普通
北京市海淀区清华附中2018-2019学年八年级上学期数学期中考试试卷
利用整式的乘法知识,我们可以证明以下有趣的结论:“将两个有理数的平方和与另两个有理数的平方和相乘,得到的乘积仍然可以表示成两个有理数的平方和”
设a , b , c , d为有理数,则
(a2+b2)(c2+d2)
=a2c2+a2d2+b2c2+b2d2
=(a2c2+2abcd+b2d2)+(a2d2﹣2abcd+b2c2)
=(ac+bd)2+(ad﹣bc)2
请你解决以下问题
130=13×10=(22+32)(12+32)=(2×1+3×3)2+(2×3﹣3×1)2=112+32
仿照这个过程将650写成两个正整数的平方和
试题篮