探究与发现:为什么二次函数
的图象是抛物线?我们知道,平面内与一个定点F和一条定直线l距离相等的点的轨迹是抛物线,这是抛物线的定义,也是其本质特征
因此,只要说明二次函数的图象符合抛物线的本质特征,就解决了为什么二次函数
的图象是抛物线的问题
进一步讲,由抛物线与其方程之间的关系可知,如果能用适当的方式将
转化为抛物线标准方程的形式,那么就可以判定二次函数
的图象是抛物线了.下面我们就按照这个思路来展开.对二次函数式
的右边配方,得
.由函数图象平移
一般地,设
是坐标平面内的一个图形,将
上所有点按照同一方向,移动同样的长度,得到图形
,这一过程叫作图形的平移
的知识可以知道,沿向量
平移函数
的图象
如图,函数图象的形状、大小不发生任何变化,平移后图象对应的函数解析式为
,我们把它改写为
的形式
方程
,这是顶点为坐标原点,焦点为
的抛物线.这样就说明了二次函数
的图象是一条抛物线.
请根据以上阅读材料,回答下列问题: