2018年中考数学专题高分攻略6讲专题三阅读理解型问题

修改时间:2018-05-11 浏览次数:747 类型:二轮复习 编辑

选择试卷全部试题 *点击此按钮,可全选试卷全部试题,进行试卷编辑

一、单选题

  • 1. 已知点A在函数y1=﹣ (x>0)的图象上,点B在直线y2=kx+1+k(k为常数,且k≥0)上.若A,B两点关于原点对称,则称点A,B为函数y1 , y2图象上的一对“友好点”.请问这两个函数图象上的“友好点”对数的情况为(   )

    A . 有1对或2对 B . 只有1对 C . 只有2对 D . 有2对或3对
  • 2. 如图示,若△ABC内一点P满足∠PAC=∠PBA=∠PCB,则点P为△ABC的布洛卡点.三角形的布洛卡点(Brocard  point)是法国数学家和数学教育家克洛尔(A.L.Crelle  1780﹣1855)于1816年首次发现,但他的发现并未被当时的人们所注意,1875年,布洛卡点被一个数学爱好者法国军官布洛卡(Brocard   1845﹣1922)重新发现,并用他的名字命名.问题:已知在等腰直角三角形DEF中,∠EDF=90°,若点Q为△DEF的布洛卡点,DQ=1,则EQ+FQ=(   )

    A . 5 B . 4 C . D .

二、填空题

  • 3. 定义一种新的运算:x*y= ,如:3*1= = ,则(2*3)*2=
  • 4.

    阅读理解:用“十字相乘法”分解因式2x2﹣x﹣3的方法.

    (i)二次项系数2=1×2;

    (ii)常数项﹣3=﹣1×3=1×(﹣3),验算:“交叉相乘之和”;

    1×3+2×(﹣1)=1     1×(﹣1)+2×3=5     1×(﹣3)+2×1=﹣1     1×1+2×(﹣3)=﹣5

    (iii)发现第③个“交叉相乘之和”的结果1×(﹣3)+2×1=﹣1,等于一次项系数﹣1.

    即:(x+1)(2x﹣3)=2x2﹣3x+2x﹣3=2x2﹣x﹣3,则2x2﹣x﹣3=(x+1)(2x﹣3).

    像这样,通过十字交叉线帮助,把二次三项式分解因式的方法,叫做十字相乘法.仿照以上方法,分解因式:3x2+5x﹣12=

三、综合题

  • 5. 对于任意实数 ,定义关于“ ”的一种运算如下: .例如:

    (1) 若 ,求 的值;

    (2) 若 ,求 的取值范围.

  • 6.

    如图,分别是可活动的菱形和平行四边形学具,已知平行四边形较短的边与菱形的边长相等.

    (1) 在一次数学活动中,某小组学生将菱形的一边与平行四边形较短边重合,摆拼成如图1所示的图形,AF经过点C,连接DE交AF于点M,观察发现:点M是DE的中点.

    下面是两位学生有代表性的证明思路:

    思路1:不需作辅助线,直接证三角形全等;

    思路2:不证三角形全等,连接BD交AF于点H.…

    请参考上面的思路,证明点M是DE的中点(只需用一种方法证明);

    (2) 如图2,在(1)的前提下,当∠ABE=135°时,延长AD、EF交于点N,求 的值;

    (3) 在(2)的条件下,若 =k(k为大于 的常数),直接用含k的代数式表示 的值.

  • 7. 定义:

    数学活动课上,李老师给出如下定义:如果一个三角形有一边上的中线等于这条边的一半,那么称这个三角形为“智慧三角形”.

    理解:

    (1) 如图1,已知A、B是⊙O上两点,请在圆上找出满足条件的点C,使△ABC为“智慧三角形”(画出点C的位置,保留作图痕迹);

    (2) 如图2,在正方形ABCD中,E是BC的中点,F是CD上一点,且CF= CD,试判断△AEF是否为“智慧三角形”,并说明理由;

    运用:

    (3) 如图3,在平面直角坐标系xOy中,⊙O的半径为1,点Q是直线y=3上的一点,若在⊙O上存在一点P,使得△OPQ为“智慧三角形”,当其面积取得最小值时,直接写出此时点P的坐标.

  • 8.

    在平面直角坐标系中,我们定义直线y=ax﹣a为抛物线y=ax2+bx+c(a、b、c为常数,a≠0)的“梦想直线”;有一个顶点在抛物线上,另有一个顶点在y轴上的三角形为其“梦想三角形”.

    已知抛物线y=﹣ x2 x+2 与其“梦想直线”交于A、B两点(点A在点B的左侧),与x轴负半轴交于点C.

    (1) 填空:该抛物线的“梦想直线”的解析式为,点A的坐标为,点B的坐标为

    (2) 如图,点M为线段CB上一动点,将△ACM以AM所在直线为对称轴翻折,点C的对称点为N,若△AMN为该抛物线的“梦想三角形”,求点N的坐标;

    (3) 当点E在抛物线的对称轴上运动时,在该抛物线的“梦想直线”上,是否存在点F,使得以点A、C、E、F为顶点的四边形为平行四边形?若存在,请直接写出点E、F的坐标;若不存在,请说明理由.

  • 9. 在平面直角坐标系中,将一点(横坐标与纵坐标不相等)的横坐标与纵坐标互换后得到的点叫这一点的“互换点”,如(﹣3,5)与(5,﹣3)是一对“互换点”.
    (1) 任意一对“互换点”能否都在一个反比例函数的图象上?为什么?
    (2) M、N是一对“互换点”,若点M的坐标为(m,n),求直线MN的表达式(用含m、n的代数式表示);
    (3) 在抛物线y=x2+bx+c的图象上有一对“互换点”A、B,其中点A在反比例函数y=﹣ 的图象上,直线AB经过点P( ),求此抛物线的表达式.
  • 10. 阅读材料:

    在平面直角坐标系xOy中,点P(x0 , y0)到直线Ax+By+C=0的距离公式为:d=

    例如:求点P0(0,0)到直线4x+3y﹣3=0的距离.

    解:由直线4x+3y﹣3=0知,A=4,B=3,C=﹣3,

    ∴点P0(0,0)到直线4x+3y﹣3=0的距离为d= =

    根据以上材料,解决下列问题:

    (1) 点P1(3,4)到直线y=﹣ x+ 的距离为

    (2) 已知:⊙C是以点C(2,1)为圆心,1为半径的圆,⊙C与直线y=﹣ x+b相切,求实数b的值;

    (3) 如图,设点P为问题2中⊙C上的任意一点,点A,B为直线3x+4y+5=0上的两点,且AB=2,请求出SABP的最大值和最小值.


试题篮