2023-2024学年初中数学沪科版七年级下册 7.4 综合和实践排队问题 同步分层训练培优卷

修改时间:2024-02-29 浏览次数:39 类型:同步测试 编辑

选择试卷全部试题 *点击此按钮,可全选试卷全部试题,进行试卷编辑

一、选择题

  • 1. 定义:对于实数a , 符号表示不大于a的最大整数.例如:[5.7]=5,[5]=5,[-π]=-4,如果 , 则x的取值范围是( )
    A . B . C . D .
  • 2. 对一个实数x按如图所示的程序进行操作,规定:程序运行从“输入一个实数x”到“判断结果是否大于190?”为一次操作,如果操作恰好进行两次就停止了,那么x的取值范围是( )

    A . 8<x≤22 B . 8≤x<22 C . 8<x≤64 D . 22<x≤64
  • 3. 为了落实精准扶贫政策,某单位对某山区贫困村提供优质种羊若干只.在准备配发的过程中发现:公羊刚好每户1只;若每户发放母羊5只,则多出15只母羊,若每户发放母羊7只,则有一户可分得母羊但不足3只.这批种羊共( )只.
    A . 55 B . 85 C . 65 D . 75
  • 4. 如图,天平右盘中的每个砝码的质量都是1克,则天平左盘中的每个小立方体的质量m的取值范围是( )

    A . m<2 B . C . m<2或 D .
  • 5. 某企业次定购买A,B两种型号的污水处理设备共8台,具体情况如下表:
     

    A型

    B型

    价格(万无台)

    12

    10

    月污水处理能力(吨月)

    200

    160

    经预算,企业最多支出89万元购买设备,且要求月处理污水能力不低1380吨,该企业有哪些购买方案呢?这解决这个问题,高购买A型污水处理设备x台,所列不等式组正确的是  

    A . B . C . D .
  • 6. 规定:对于任意实数x,通常用[x]表示不超过x的最大整数,如:[π]=3,[2]=2,[-2.1]=-3给出下列结论:①[-x]=-x;②若[x]=n,则x的取值范围是n≤x<n+1;③当-1<x<1时,[1+x]+[1-x]的值为1或2;④x=-2.75是方程4x-2[x]+5=0的唯一解.其中正确结论的序号是( )
    A . ①② B . ②③ C . ①③ D . ③④
  • 7. 如图,将一枚跳棋放在七边形ABCDEFG的顶点A处,按顺时针方向移动这枚跳棋2020次.移动规则是:第k次移动k个顶点(如第一次移动1个顶点,跳棋停留在B处,第二次移动2个顶点,跳棋停留在D处),按这样的规则,在这2020次移动中,跳棋不可能停留的顶点是(   )

    A . CE B . EF C . GCE D . ECF
  • 8. 如图为小丽和小欧依次进入电梯时,电梯因超重而警示音响起的过程,且过程中没有其他人进出.

    已知当电梯乘载的重量超过400千克时警示音响起,且小丽、小欧的重量分别为50千克、70千克.若小丽进入电梯前,电梯内已乘载的重量为千克,则的取值范围是(    )

    A . B . C . D .

二、填空题

  • 9. 记表示正数x四舍五入后的结果,例如 . 若 , 则x的取值范围是
  • 10. 关于x的不等式组只有3个整数解,则a的取值范围是
  • 11. 某陶艺工坊有两款电热窑,可以烧制不同尺寸的陶艺品,两款电热窑每次可同时放置陶艺品的尺寸和数量如表所示.                                                                                                                                       

    尺寸

    数量

    款式

             

             

             

             

             

        

             

             

    烧制一个大尺寸陶艺品的位置可替换为烧制两个中尺寸或六个小尺寸陶艺品,但烧制较小陶艺品的位置不能替换为烧制较大陶艺品.

    某批次需要生产个大尺寸陶艺品,个中尺寸陶艺品,个小尺寸陶艺品.

     

    (1) 烧制这批陶艺品,款电热窑至少使用 次;
    (2) 若款电热窑每次烧制成本为元,款电热窑每次烧制成本为元,则烧制这批陶艺品成本最低为 
  • 12. 若数a使关于x的方程有非负数解,且关于y的不等式恰好有两个偶数解,则符合条件的所有整数a的和是 
  • 13. 邮政部门规定:信函重100克以内(包括100克)每20克贴邮票0.8元,不足20克重以20克计算;超过100克,先贴邮票4元,超过100克部分每100克加贴邮票2元,不足100克重以100克计算.八(9)班有11位同学参加项目化学习知识竞赛,若每份答卷重12克,每个信封重4克,将这11份答卷分装在两个信封中寄出,所贴邮票的总金额最少是元.

三、解答题

  • 14. 某中学为筹备校庆,准备印制一批纪念册. 该纪念册每册需要10张8开大小的纸,其中4张为彩页,6张为黑白页.印制该纪念册的总费用由制版费和印刷费两部分组成,制版费与印数无关,价格为:彩页300元/张,黑白页50元/张.印刷费与印数的关系见下表.

    印数a(千册)

    1≤a<5 

    a≥5

    彩色(元/张)

    2.2

    2.0

    黑白(元/张)

    0.7

    0.6

    (1) 印制这批纪念册需制版费多少元?
    (2) 若印制2千册,则共需多少元?
    (3) 如果该校希望印数至少为4千册,总费用最多为60000元,求印数的取值范围.(精确到0.01千册)
  • 15. 某厨具店购入10台A型电饭煲和20台B型电饭煲进行销售,共花费5600元.已知每台B型电饭煲的进价比A型电饭煲少20元.
    (1) A,B两种型号的电饭煲每台进价分别为多少元?
    (2) 为了满足市场需求,厨具店决定用不超过9560元的资金再次购入这两种型号的电饭锅共50台,且A型电饭煲的数量不少于B型电饭煲的数量,厨具店一共有几种进货方案?
    (3) 在(2)的条件下,若50台电饭煲全部售完,已知A型电饭煲售价为每台300元,B型电饭煲售价为每台260元.则用哪种进货方案厨具店获利最大?并请求出最大利润.

四、综合题

  • 16. 华府小区准备新建50个停车位,以解决小区停车难的问题.已知新建2个地上停车位和1个地下停车位需0.6万元;新建3个地上停车位和2个地下停车位需1.1万元.
    (1) 该小区新建1个地上停车位和1个地下停车位各需多少万元?
    (2) 若该小区预计投入资金不少于10万元而又不足11万元,则有哪几种建造方案?
    (3) 在(2)的条件下,说明哪种方案费用最低.
  • 17. 如图按下列程序进行计算.规定:程序运行到“判断结果是否大于244”为一次运算,结果大于244,则输出此结果,则将此结果的值赋给m , 再进行第二次计算.

      

    (1) 若 , 求运算进行多少次才会停止?
    (2) 若运算进行了3次才停止.求m的取值范围.

试题篮