修改时间:2021-07-12 浏览次数:142 类型:二轮复习 编辑
查看解析 收藏 纠错
+选题
阅读理解
我们知道,1+2+3+…+n= ,那么12+22+32+…+n2结果等于多少呢?
在图1所示三角形数阵中,第1行圆圈中的数为1,即12 , 第2行两个圆圈中数的和为2+2,即22 , …;第n行n个圆圈中数的和为 ,即n2 , 这样,该三角形数阵中共有 个圆圈,所有圆圈中数的和为12+22+32+…+n2 .
第1个等式: ,
第2个等式: ,
第3个等式: ,
第4个等式: ,
第5个等式: ,
……
按照以上规律,解决下列问题:
如,第一次按键后,A,B两区分别显示:
观察下列图形与等式的关系,并填空:
观察下图,根据(1)中结论,计算图中黑球的个数,用含有n的代数式填空:
1+3+5+…+(2n﹣1)+()+(2n﹣1)+…+5+3+1=.
试题篮