云南省2021年中考数学试卷

修改时间:2021-07-23 浏览次数:387 类型:中考真卷 编辑

选择试卷全部试题 *点击此按钮,可全选试卷全部试题,进行试卷编辑

一、单选题

  • 1. 某地区2021年元旦的最高气温为 ,最低气温为 ,那么该地区这天的最低气温比最高气温低(    )
    A . B . C . D .
  • 2. 如图,直线c与直线ab都相交.若 ,则 (    )

    A . B . C . D .
  • 3. 一个十边形的内角和等于(    )
    A . B . C . D .
  • 4. 在 中, ,若 ,则 的长是(    )
    A . B . C . 60 D . 80
  • 5. 若一元二次方程 有两个不相等的实数根,则实数a的取值范围是(    )
    A . B . C . D .
  • 6. 按一定规律排列的单项式: ,……,第n个单项式是(    )
    A . B . C . D .
  • 7. 如图,等边 的三个顶点都在 上, 的直径.若 ,则劣弧 的长是(    )

    A . B . C . D .
  • 8. 2020年以来,我国部分地区出现了新冠疫情.一时间,疫情就是命令,防控就是责任,一方有难八方支援,某公司在疫情期间为疫区生产ABCD四种型号的帐篷共20000顶,有关信息见如下统计图:

    下列判断正确的是(    )

    A . 单独生产B型帐篷的天数是单独生产C型帐篷天数的3倍 B . 单独生产B型帐篷的天数是单独生产A型帐篷天数的1.5倍 C . 单独生产A型帐篷与单独生产D型帐篷的天数相等 D . 每天单独生产C型帐篷的数量最多

二、填空题

三、解答题

  • 15. 计算:
  • 16. 如图,在四边形 中, 相交于点E . 求证:

  • 17. 垃圾的分类回收不仅能够减少环境污染,美化家园,甚至能够变废为宝,节约能源,为增强学生垃圾分类意识,推动垃圾分类进校园,某中学组织全校1565名学生参加了“垃圾分类知识竞赛”(满分为100分),该校数学兴趣小组为了解全校学生竞赛分数情况,采用简单随机抽样的方法(即每名学生的竞赛分数被抽到的可能性相等的抽样方法)抽取部分学生的竞赛分数进行调查分析.
    (1) 以下三种抽样调查方案:

    方案一:从七年级、八年级、九年级中指定部分学生的竞赛分数作为样本;

    方案二:从七年级、八年级中随机抽取部分男生的竞赛分数以及在九年级中随机抽取部分女生的竞赛分数作为样本;

    方案三:从全校1565名学生的竞赛分数中随机抽取部分学生的竞赛分数作为样本,其中抽取的样最具有代表性和广泛性的一种抽样调查方案是(填写“方案一”、“方案二”或“方案三”);

    (2) 该校数学兴趣小组根据简单随机抽样方法获得的样本,绘制出如下统计表(90分及以上为“优秀”,60分及以上为“及格”,学生竞赛分数记为x分)

    样本容量

    平均分

    及格率

    优秀率

    最高分

    最低分

    100

    83.59

    95%

    40%

    100

    52

    分数段

    频数

    5

    7

    18

    30

    40

    结合上述信息解答下列问题:

    ①样本数据的中位数所在分数段为

    ②全校1565名学生,估计竞赛分数达到“优秀”的学生有人.

  • 18. “30天无理由退货”是营造我省“诚信旅游”良好环境,进一步提升旅游形象的创新举措.机场、车站、出租车、景区、手机短信……,“30天无理由退货”的提示随处可见,它已成为一张云南旅行的“安心卡”,极大地提高了旅游服务的品质.刚刚过去的“五·一”假期,旅游线路、住宿、餐饮、生活服务、购物等旅游消费的供给更加多元,同步的是云南旅游市场强劲复苏.某旅行社今年5月1日租用AB两种客房一天,供当天使用.下面是有关信息:今天用2000元租到A客房的数量与用1600元租到B客房的数量相等.今天每间A客房的租金比每间B客房的租金多40元.请根据上述信息,分别求今年5月1日该旅行社租用的AB两种客房每间客房的租金.
  • 19. 为庆祝中国共产党成立100周年,某市组织该市七、八两个年级学生参加演讲比赛,演讲比赛的主题为“追忆百年历程,凝聚青春力量”该市一中学经过初选,在七年级选出3名同学,其中2名女生,分别记 ,1名男生,记为 ;在八年级选出3名同学,其中1名女生,记为 ,2名男生,分别记为 .现分别从两个年级初选出的同学中,每个年级随机选出一名同学组成代表队参加比赛.
    (1) 用列表法或树状图法(树状图也称树形图)中的一种方法,求所有可能出现的代表队总数;
    (2) 求选出的代表队中的两名同学恰好是一名男生和一名女生的概率P
  • 20. 如图,四边形 是矩形,EF分别是线段 上的点,点O 的交点.若将 沿直线 折叠,则点E与点F重合.

    (1) 求证:四边形 是菱形;
    (2) 若 ,求 的值.
  • 21. 某鲜花销售公司每月付给销售人员的工资有两种方案.

    方案一:没有底薪,只付销售提成;

    方案二:底薪加销售提成.

    如图中的射线 ,射线 分别表示该鲜花销售公司每月按方案一,方案二付给销售人员的工资 (单位:元)和 (单位:元)与其当月鲜花销售量x(单位:千克)( )的函数关系.

    (1) 分别求 x的函数解析式(解析式也称表达式);
    (2) 若该公司某销售人员今年3月份的鲜花销售量没有超过70千克,但其3月份的工资超过2000元.这个公司采用了哪种方案给这名销售人员付3月份的工资?
  • 22. 如图, 的直径,点C 上异于AB的点,连接 ,点D 的延长线上,且 ,点E 的延长线上,且

    (1) 求证: 的切线:
    (2) 若 ,求 的长.
  • 23. 已知抛物线 经过点 ,当 时,yx的增大而增大,当 时,yx的增大而减小.设r是抛物线 x轴的交点(交点也称公共点)的横坐标,
    (1) 求bc的值:
    (2) 求证:
    (3) 以下结论: ,你认为哪个符合题意?请证明你认为正确的那个结论.

试题篮