浙江省杭州市2020年中考数学模拟试卷2

修改时间:2024-11-06 浏览次数:440 类型:中考模拟 编辑

选择试卷全部试题 *点击此按钮,可全选试卷全部试题,进行试卷编辑

一、选择题(本大题共10小题,每小题3分,共30分。)

  • 1. 下列说法错误的是(    )
    A . 有理数和无理数统称为实数; B . 无限不循环小数是无理数; C . 是分数; D . 是无理数
  • 2. 下列四个立体图形中,其主视图是轴对称图形但不是中心对称图形的是( )
    A . B . C . D .
  • 3. 如图所示的几何体的左视图是(   )

    A . B . C . D .
  • 4. 若2n+2n+2n+2n=2,则n=(   )
    A . ﹣1 B . ﹣2 C . 0 D .
  • 5. 如图,一根直尺EF压在三角板  的角∠BAC上,欲使CB∥EF,则应使∠ENB的度数为(      )

    A . B . C . D .
  • 6. 小明和同学做“抛掷质地均匀的硬币试验”获得的数据如表:

    抛掷次数

    100

    200

    300

    400

    500

    正面朝上的频数

    53

    98

    156

    202

    244

    若抛掷硬币的次数为1000,则“正面朝上”的频数最接近(    )

    A . 20 B . 300 C . 500 D . 800
  • 7.

    如图,点A在以BC为直径的⊙O内,且AB=AC,以点A为圆心,AC长为半径作弧,得到扇形ABC,剪下扇形ABC围成一个圆锥(AB和AC重合),若∠BAC=120°,BC=2 ,则这个圆锥底面圆的半径是(  )

    A . B . C . D .
  • 8. 我国古代数学著作《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五,屈绳量之,不足一尺,问木长几何?”大致意思是:“用一根绳子去量一根木条,绳子剩余4.5尺,将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”,设绳子长x尺,木条长y尺,根据题意所列方程组正确的是(   )
    A . B . C . D .
  • 9.

    如图,点A在双曲线y= 上,点B在双曲线y= (k≠0)上,AB∥x轴,过点A作AD⊥x轴于D.连接OB,与AD相交于点C,若AC=2CD,则k的值为(  )

    A . 6 B . 9 C . 10 D . 12
  • 10. 如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序按图中“ ”方向排序,如 ,…,根据这个规律,第 个点的横坐标为(    )

    A . 44 B . 45 C . 46 D . 47

二、填空题(本大题共6小题,每小题4分,共24分)

  • 11. 若代数式 的值相等,则x=
  • 12. 计算 × 的值是
  • 13. 某校九年级科技小组,利用日晷原理,设计制造了一台简易的“日晷”,并在一个阳光明媚的日子里记录了不同时刻晷针的影长,其中10:00时的影长被墨水污染.请根据规律,判断10:00时,该晷针的影长是cm.

  • 14. 在平面直角坐标系中,点A(2,0),B(0,4),求点C,使以点B、O、C为顶点的三角形与△ABO全等,则点C的坐标为.
  • 15. 二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象可知:方程ax2+bx+c=k有两个不相等的实数根,则k的取值范围为.

  • 16. 已知Rt△ABC中,∠C=90°,BC=1,AC=4,如图所示把边长分别为x1 , x2 , x3 , …,xn的n个正方形依次放入△ABC中,则第n个正方形的边长xn(用含n的式子表

    示,n≥1).

三、解答题(本大题共7小题,共66分)

  • 17.     
    (1) 计算:


    (2) 先化简,再求值: ,其中 .


  • 18. 某养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的质量(单位: ),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:

    (Ⅰ)求图①中m的值;

    (Ⅱ)求统计的这组数据的平均数、众数和中位数;

    (Ⅲ) 根据样本数据,估计这2500只鸡中,质量为2.0kg的约有多少只?


  • 19. 某商店第一次用600元购进2B铅笔若干支,第二次又用600元购进该款铅笔,但这次每支的进价是第一次进价的 倍,购进数量比第一次少了30支.
    (1) 求第一次每支铅笔的进价是多少元?
    (2) 若要求这两次购进的铅笔按同一价格全部销售完毕后获利不低于420元,问每支售价至少是多少元?
  • 20.

    如图,已知BD是矩形ABCD的对角线.

    (1) 用直尺和圆规作线段BD的垂直平分线,分别交AD、BC于E、F(保留作图痕迹,不写作法和证明).

    (2) 连结BE,DF,问四边形BEDF是什么四边形?请说明理由.

  • 21. 如图,在平面直角坐标系中,四边形OABC的顶点坐标分别为O(0,0),A(12,0),B(8,6),C(0,6).动点P从点O出发,以每秒3个单位长度的速度沿边OA向终点A运动,动点Q从点B同时出发,以每秒2个单位长度的速度沿边BC向终点C运动.设运动的时间为t秒,PQ2=y.

    (1) 直接写出y关于t的函数解析式及t的取值范围:


    (2) 当PQ=3 时,求t的值,
    (3) 连接OB交PQ于点D,若双曲线y= (k≠0)经过点D,问k的值是否变化?若不变化,请求出k的值,若变化,请说明理由.
  • 22.

    如图1,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,四边形ADEF是正方形,点B、C分别在边AD、AF上,此时BD=CF,BD⊥CF成立.

    (1) 当△ABC绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明,若不成立,请说明理由;

    (2) 当△ABC绕点A逆时针旋转45°时,如图3,延长BD交CF于点H.

    ①求证:BD⊥CF;

    ②当AB=2,AD=3 时,求线段DH的长.

  • 23. 如图1,经过原点O的抛物线y=ax2+bx(a≠0)与x轴交于另一点A( ,0),在第一象限内与直线y=x交于点B(2,t).

    (1) 求这条抛物线的表达式;
    (2) 在第四象限内的抛物线上有一点C,满足以B,O,C为顶点的三角形的面积为2,求点C的坐标;
    (3) 如图2,若点M在这条抛物线上,且∠MBO=∠ABO,在(2)的条件下,是否存在点P,使得△POC∽△MOB?若存在,求出点P的坐标;若不存在,请说明理由.

试题篮