2017年山东省日照市中考数学试卷

修改时间:2024-07-12 浏览次数:1203 类型:中考真卷 编辑

选择试卷全部试题 *点击此按钮,可全选试卷全部试题,进行试卷编辑

一、选择题:

  • 1. ﹣3的绝对值是(   )
    A . ﹣3 B . 3 C . ±3 D .
  • 2. 剪纸是我国传统的民间艺术.下列剪纸作品既不是中心对称图形,也不是轴对称图形的是(   )

    A . B . C . D .
  • 3. 铁路部门消息:2017年“端午节”小长假期间,全国铁路客流量达到4640万人次.4640万用科学记数法表示为(   )

    A . 4.64×105 B . 4.64×106 C . 4.64×107 D . 4.64×108
  • 4. 在Rt△ABC中,∠C=90°,AB=13,AC=5,则sinA的值为(   )
    A . B . C . D .
  • 5. 如图,AB∥CD,直线l交AB于点E,交CD于点F,若∠1=60°,则∠2等于(   )

    A . 120° B . 30° C . 40° D . 60°
  • 6. 式子 有意义,则实数a的取值范围是(   )
    A . a≥﹣1 B . a≠2 C . a≥﹣1且a≠2 D . a>2
  • 7. 下列说法正确的是(   )
    A . 圆内接正六边形的边长与该圆的半径相等 B . 在平面直角坐标系中,不同的坐标可以表示同一点 C . 一元二次方程ax2+bx+c=0(a≠0)一定有实数根 D . 将△ABC绕A点按顺时针方向旋转60°得△ADE,则△ABC与△ADE不全等
  • 8. 反比例函数y= 的图象如图所示,则一次函数y=kx+b(k≠0)的图象的图象大致是(   )

    A . B . C . D .
  • 9. 如图,AB是⊙O的直径,PA切⊙O于点A,连结PO并延长交⊙O于点C,连结AC,AB=10,∠P=30°,则AC的长度是(   )

    A . B . C . 5 D .
  • 10.

    如图,∠BAC=60°,点O从A点出发,以2m/s的速度沿∠BAC的角平分线向右运动,在运动过程中,以O为圆心的圆始终保持与∠BAC的两边相切,设⊙O的面积为S(cm2),则⊙O的面积S与圆心O运动的时间t(s)的函数图象大致为(   )

    A . B . C . D .
  • 11.

    观察下面“品”字形中各数之间的规律,根据观察到的规律得出a的值为(   )

    A . 23 B . 75 C . 77 D . 139
  • 12. 已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论:

    ①抛物线过原点;

    ②4a+b+c=0;

    ③a﹣b+c<0;

    ④抛物线的顶点坐标为(2,b);

    ⑤当x<2时,y随x增大而增大.

    其中结论正确的是(   )

    A . ①②③ B . ③④⑤ C . ①②④ D . ①④⑤

二、填空题

  • 13. 分解因式:2m3﹣8m=
  • 14. 为了解某初级中学附近路口的汽车流量,交通管理部门调查了某周一至周五下午放学时间段通过该路口的汽车数量(单位:辆),结果如下:

    183    191    169   190    177

    则在该时间段中,通过这个路口的汽车数量的平均数是

  • 15. 如图,四边形ABCD中,AB=CD,AD∥BC,以点B为圆心,BA为半径的圆弧与BC交于点E,四边形AECD是平行四边形,AB=6,则扇形(图中阴影部分)的面积是

  • 16. 如图,在平面直角坐标系中,经过点A的双曲线y= (x>0)同时经过点B,且点A在点B的左侧,点A的横坐标为 ,∠AOB=∠OBA=45°,则k的值为

三、解答题

  • 17. 计算题

    (1) 计算:﹣(2﹣ )﹣(π﹣3.14)0+(1﹣cos30°)×( 2

    (2) 先化简,再求值: ÷ ,其中a=

  • 18. 如图,已知BA=AE=DC,AD=EC,CE⊥AE,垂足为E.

    (1) 求证:△DCA≌△EAC;
    (2) 只需添加一个条件,即,可使四边形ABCD为矩形.请加以证明.
  • 19. 若n是一个两位正整数,且n的个位数字大于十位数字,则称n为“两位递增数”(如13,35,56等).在某次数学趣味活动中,每位参加者需从由数字1,2,3,4,5,6构成的所有的“两位递增数”中随机抽取1个数,且只能抽取一次.
    (1) 写出所有个位数字是5的“两位递增数”;
    (2) 请用列表法或树状图,求抽取的“两位递增数”的个位数字与十位数字之积能被10整除的概率.
  • 20. 某市为创建全国文明城市,开展“美化绿化城市”活动,计划经过若干年使城区绿化总面积新增360万平方米.自2013年初开始实施后,实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务.
    (1) 问实际每年绿化面积多少万平方米?
    (2) 为加大创城力度,市政府决定从2016年起加快绿化速度,要求不超过2年完成,那么实际平均每年绿化面积至少还要增加多少万平方米?
  • 21. 阅读材料:

    在平面直角坐标系xOy中,点P(x0 , y0)到直线Ax+By+C=0的距离公式为:d=

    例如:求点P0(0,0)到直线4x+3y﹣3=0的距离.

    解:由直线4x+3y﹣3=0知,A=4,B=3,C=﹣3,

    ∴点P0(0,0)到直线4x+3y﹣3=0的距离为d= =

    根据以上材料,解决下列问题:

    (1) 点P1(3,4)到直线y=﹣ x+ 的距离为

    (2) 已知:⊙C是以点C(2,1)为圆心,1为半径的圆,⊙C与直线y=﹣ x+b相切,求实数b的值;

    (3) 如图,设点P为问题2中⊙C上的任意一点,点A,B为直线3x+4y+5=0上的两点,且AB=2,请求出SABP的最大值和最小值.


  • 22.

    如图所示,在平面直角坐标系中,⊙C经过坐标原点O,且与x轴,y轴分别相交于M(4,0),N(0,3)两点.已知抛物线开口向上,与⊙C交于N,H,P三点,P为抛物线的顶点,抛物线的对称轴经过点C且垂直x轴于点D.

    (1) 求线段CD的长及顶点P的坐标;

    (2) 求抛物线的函数表达式;

    (3) 设抛物线交x轴于A,B两点,在抛物线上是否存在点Q,使得S四边形OPMN=8SQAB , 且△QAB∽△OBN成立?若存在,请求出Q点的坐标;若不存在,请说明理由.

试题篮