试题 试卷
题型:填空题 题类:常考题 难易度:普通
浙江省宁波市慈溪市2019-2020学年高二下学期数学期末考试试卷
(1)当a=1时,求函数y=f(x)在点(1,f(1))处的切线方程.
(2)设g(x)=lnx+﹣e,若函数h(x)=f(x)﹣g(x)在定义域内存在两个零点,求实数a的取值范围.
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)设曲线y=f(x)与x轴正半轴的交点为P,曲线在点P处的切线方程为y=g(x),求证:对于任意的正实数x,都有f(x)≤g(x);
(Ⅲ)若关于x的方程f(x)=a(a为实数)有两个正实数根x1 , x2 , 求证:|x2﹣x1|< +2.
试题篮