修改时间:2024-04-16 浏览次数:31 类型:复习试卷
例如:分解因式;例如求代数式的最小值.由可知,当时,有最小值,最小值是 .
根据阅读材料用配方法解决下列问题;
①平方和数:若一个三位或者三位以上的正整数分成左、中、右三个数后满足:中间数=(左边数)2+(右边数)2 , 我们就称该整数是平方和数,例如:整数 , 它的中间数是5,左边数是2,右边数是1,∵ , ∴是平方和数;再例如: , ∵ , ∴是一个平方和数;当然152,这两个数也肯定是平方和数;
②双倍积数:若一个三位或者三位以上的正整数分成左、中、右三个数后满足:中间数=2×左边数×右边数,我们称该整数是双倍积数;例如:整数 , 它的中间数是4,左边数是1,右边数是2,∵ , ∴是一个双倍积数;再例如: , ∵ , ∴是一个双倍积数;当然, , 也是一个双倍积数;
注意:在下列问题中,我们统一用字母a表示一个正整数分出来的左边数,用字母b表示一个正整数分出来的右边数,请根据上述定义完成下面问题:
试题篮