浙江省2021年中考数学真题分类汇编09 圆

修改时间:2021-07-22 浏览次数:264 类型:二轮复习 编辑

选择试卷全部试题 *点击此按钮,可全选试卷全部试题,进行试卷编辑

一、单选题

  • 1. 已知扇形的半径为6,圆心角为 .则它的面积是(   )
    A . B . C . D .
  • 2. 如图,正方形ABCD内接于 ,点P在 上,则 的度数为(   )

    A . B . C . D .
  • 3. 已知平面内有⊙O和点AB , 若⊙O半径为2cm , 线段OA=3cmOB=2cm , 则直线AB与⊙O的位置关系为( )
    A . 相离 B . 相交 C . 相切 D . 相交或相切
  • 4. 如图,已知点O是△ABC的外心,∠A=40°,连结BO,CO,则∠BOC的度数是(   )

    A . 60° B . 70° C . 80° D . 90°
  • 5. 如图,已知在矩形ABCD中,AB=1,BC= ,点P是AD边上的一个动点,连结BP,点C关于直线BP的对称点为C1 , 当点P运动时,点C1页随之运动。若点P从点A运动到点D,则线段CC1扫过的区域面积是

    A . π B . C . D .

二、填空题

  • 6. 如图,将线段AB绕点A顺时针旋转30°,得到线段AC.若AB=12,则点B经过的路径 长度为 .(结果保留π)

  • 7. 如图,已知⊙O的半径为1,点P是⊙O外一点,且OP=2。若PT是⊙O的切线,T为切点,连结OT,则PT=

  • 8. 若扇形的圆心角为 ,半径为17,则扇形的弧长为.
  • 9. 如图, 的边 相切,切点为 .将 绕点 按顺时针方向旋转得到 ,使点 落在 上,边 交线段 于点 .若 ,则 度.

     

  • 10. 抖空竹在我国有着悠久的历史,是国家级的非物质文化遗产之一.如示意图, 分别与 相切于点C,D,延长 交于点P.若 的半径为 ,则图中 的长为 .(结果保留

  • 11. 如图,在△ABC中,∠BAC=30°,∠ACB=45°,AB=2,点P从点A出发沿AB方向运动,到达点B时停止运动,连结CP , 点A关于直线CP的对称点为A′,连结ACAP . 在运动过程中,点A′到直线AB距离的最大值是;点P到达点B时,线段AP扫过的面积为

三、综合题

  • 12. 如图,已知AB是⊙O的直径,∠ACD是 所对的圆周角,∠ACD=30°。

    (1) 求∠DAB的度数;
    (2) 过点D作DE⊥AB,垂足为E,DE的延长线交⊙O于点F。若AB=4,求DF的长。
  • 13. 如图1,点C是半圆O的直径AB上一动点(不包括端点), ,过点C作 交半圆于点D,连结AD,过点C作 交半圆于点E,连结EB.牛牛想探究在点C运动过程中EC与EB的大小关系.他根据学习函数的经验,记 .请你一起参与探究函数 随自变量x变化的规律.

    通过几何画板取点、画图、测量,得出如下几组对应值,并在图2中描出了以各对对应值为坐标的点,画出了不完整图象.

    x 0.30 0.80 1.60 2.40 3.20 4.00 4.80 5.60
    2.01 2.98 3.46 3.33 2.83 2.11 1.27 0.38
    5.60 4.95 3.95 2.96 2.06 1.24 0.57 0.10

    (1) 当 时, .
    (2) 在图2中画出函数 的图象,并结合图象判断函数值 的大小关系.
    (3) 由(2)知“AC取某值时,有 ”.如图3,牛牛连结了OE,尝试通过计算EC,EB的长来验证这一结论,请你完成计算过程.
  • 14. 在扇形 中,半径 ,点P在OA上,连结PB,将 沿PB折叠得到 .

    (1) 如图1,若 ,且 所在的圆相切于点B.

    ①求 的度数.

    ②求AP的长.

    (2) 如图2, 相交于点D,若点D为 的中点,且 ,求 的长.
  • 15. 如图,BD是半径为3的⊙O的一条弦,BD=4 ,点A是⊙O上的一个动点(不与点B,D重合),以A,B,D为顶点作▱ABCD.

    (1) 如图2,若点A是劣弧 的中点.

    ①求证:▱ABCD是菱形;

    ②求▱ABCD的面积.

    (2) 若点A运动到优弧 上,且▱ABCD有一边与⊙O相切.

    ①求AB的长;

    ②直接写出▱ABCD对角线所夹锐角的正切值.

  • 16. 如图,在平面直角坐标系中, 经过原点 ,分别交 轴、 轴于 ,连结 .直线 分别交 于点 (点 在左侧),交 轴于点 ,连结 .

    (1) 求 的半径和直线 的函数表达式.
    (2) 求点 的坐标.
    (3) 点 在线段 上,连结 .当 的一个内角相等时,求所有满足条件的 的长.
  • 17. 如图1,四边形 内接于 为直径, 上存在点E,满足 ,连结 并延长交 的延长线于点F, 交于点G.

    (1) 若 ,请用含 的代数式表列 .
    (2) 如图2,连结 .求证; .
    (3) 如图3,在(2)的条件下,连结 .

    ①若 ,求 的周长.

    ②求 的最小值.

试题篮