湖北省潜江市王场镇初级中学2018届数学中考模拟试卷

修改时间:2024-07-31 浏览次数:565 类型:中考模拟 编辑

选择试卷全部试题 *点击此按钮,可全选试卷全部试题,进行试卷编辑

一、单选题

  • 1. 据悉,超级磁力风力发电机可以大幅度提升风力发电效率,但其造价高昂,每座磁力风力发电机,其建造花费估计要5 300万美元,“5 300万”用科学记数法可表示为(   )
    A . 5.3×103 B . 5.3×104 C . 5.3×107 D . 5.3×108
  • 2. 清晨蜗牛从树根沿着树干往上爬,树高10m,白天爬4m,夜间下滑3m,它从树根爬上树顶,需(   )
    A . 10天 B . 9天 C . 8天 D . 7天
  • 3. 如图,已知直线AB,CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直线AB,CD,AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度数可能是(   )

    A . ①②③ B . ①②④ C . ①③④ D . ①②③④
  • 4. 如图可以沿线折叠成一个带数字的立方体,每三个带数字的面交于立方体的一个顶点,则相交于一个顶点的三个面上的数字之和最小是(   )

    A . 7 B . 8 C . 9 D . 10
  • 5. 下列计算正确的是(   )
    A . 20170=0 B . =±9 C . (x23=x5 D . 3﹣1=
  • 6. 甲、乙两地去年12月前5天的日平均气温如图所示,下列描述错误的是( )

    A . 两地气温的平均数相同 B . 甲地气温的中位数是6℃ C . 乙地气温的众数是4℃ D . 乙地气温相对比较稳定
  • 7. 一个扇形的弧长是20πcm,面积是240πcm2 , 则这个扇形的圆心角等于(   )
    A . 160° B . 150° C . 120° D . 60°
  • 8. 关于x的一元二次方程x2+(a2﹣2a)x+a﹣1=0的两个实数根互为相反数,则a的值为(   )
    A . 2 B . 0 C . 1 D . 2或0
  • 9. 如图,等边△AOB和等边△ACD的一边都在x轴的正半轴,顶点B、D均在双曲线y= (x>0)上,BC与AD相交于点P,则图中△BOP的面积为(   )

    A . 2 B . 3 C . 4 D . 4
  • 10. 如图,矩形ABCD中,E是BC的中点,连接AE,过点E作EF⊥AE交DC于点F,连接AF.设  =k,下列结论:(1)△ABE∽△ECF,(2)AE平分∠BAF,(3)当k=1时,△ABE∽△ADF,其中结论正确的是(   )

    A . (1)(2)(3) B . (1)(3) C . (1)(2) D . (2)(3)

二、填空题

  • 11. 某商场销售一批电视机,一月份每台毛利润是售出价的20%(毛利润=售出价-买入价),二月份该商场将每台售出价调低10%(买入价不变),结果销售台数比一月份增加120%,那么二月份的毛利润总额与一月份毛利润总额的比是
  • 12. 小林每天下午5点放学时,爸爸总是从家开车按时到达学校接他回家,有一天学校提前一个小时放学,小林自己步行回家,在途中遇到开车来接他的爸爸,结果比平时早20分钟到家,则小林步行分钟遇到来接他的爸爸.
  • 13. 公路上行驶的汽车急刹车时的行驶路程s(m)与时间t(s)的函数关系式为s=20t﹣5t2 , 当遇到紧急情况时,司机急刹车,但由于惯性汽车要滑行 m才能停下来.
  • 14. 如图,小阳发现电线杆AB的影子落在土坡的坡面CD和地面BC上,量得CD=8米,BC=20米,CD与地面成30°角,且此时测得1米杆的影长为2米,则电线杆的高度为米.

  • 15. 甲、乙、丙3名学生随机排成一排拍照,其中甲排在中间的概率是
  • 16. 如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去….若点A( ,0),B(0,2),则B2的坐标为点B2016的坐标为

三、解答题

  • 17. 已知x为整数,且 为整数,求所有符合条件的x值的和.
  • 18. 解不等式组: ,并把解集在数轴上表示出来.
  • 19. 如图,国家奥委会五环比标志是由5个等圆组成的轴对称图形,请你设计一个由5个等圆组成的中心对称图形.

    要求:

    ①5个等圆全部用上;

    ②用尺规画出图形;

    ③用简约的文字说明你设计的含义.

  • 20. 阅读下列材料:

    社会消费品零售总额是指批发和零售业,住宿和餐饮业以及其他行业直接售给城乡居民和社会集团的消费品零售额,在各类与消费有关的统计数据中,社会消费品零售总额是表现国内消费需求最直接的数据.

    2012年,北京市全年实现社会消费品零售总额7702.8亿元,比上一年增长11.6%,2013年,全年实现社会消费品零售总额8375.1亿元,比上一年增长8.7%,2014年,全年实现社会消费品零售总额9098.1亿元,比上一年增长8.6%,2015年,全年实现社会消费品零售总额10338亿元,比上一年增长7.3%.

    2016年,北京市实现市场总消费19926.2亿元,比上一年增长了8.1%,其中实现服务性消费8921.1亿元,增长10.1%;实现社会消费品零售总额11005.1亿元,比上一年增长了6.5%.

    根据以上材料解答下列问题:

    (1) 补全统计表:

    2012﹣2016年北京市社会消费品零售总额统计表

     年份

     2012年

     2013年

     2014年

     2015年

     2016年

     社会消费品零售总额(单位:亿元)

    (2) 选择适当的统计图将2012﹣2016年北京市社会消费品零售总额比上一年的增长率表示出来,并在图中表明相应数据;
    (3) 根据以上信息,估计2017年北京市社会消费品零售总额比上一年的增长率约为,你的预估理由是
  • 21. 如图,AB为⊙O的直径,C为⊙O上一点,AD和过C点的切线互相垂直,垂足为D.

    (1) 求证:AC平分∠DAB;
    (2) 过点O作线段AC的垂线OE,垂足为E(要求:尺规作图,保留作图痕迹,不写作法);
    (3) 若CD=4,AC=4 ,求垂线段OE的长.
  • 22. A、B两辆汽车同时从相距330千米的甲、乙两地相向而行,s(千米)表示汽车与甲地的距离,t(分)表示汽车行驶的时间,如图,L1 , L2分别表示两辆汽车的s与t的关系.

    (1) L1表示哪辆汽车到甲地的距离与行驶时间的关系?
    (2) 汽车B的速度是多少?
    (3) 求L1 , L2分别表示的两辆汽车的s和t的关系式。
    (4) 2小时后,两车相距多少千米?
    (5) 行驶多长时间后,A、B两车相遇?
  • 23. 已知抛物线y=kx2+(k﹣2)x﹣2(其中k>0).
    (1) 求该抛物线与x轴的交点及顶点的坐标(可以用含k的代数式表示);
    (2) 若记该抛物线顶点的坐标为P(m,n),直接写出|n|的最小值;
    (3) 将该抛物线先向右平移 个单位长度,再向上平移 个单位长度,随着k的变化,平移后的抛物线的顶点都在某个新函数的图象上,求新函数的解析式(不要求写自变量的取值范围).
  • 24. 阅读下列材料,完成任务:

    自相似图形

    定义:若某个图形可分割为若干个都与它相似的图形,则称这个图形是自相似图形.例如:正方形ABCD中,点E、F、G、H分别是AB、BC、CD、DA边的中点,连接EG,HF交于点O,易知分割成的四个四边形AEOH、EBFO、OFCG、HOGD均为正方形,且与原正方形相似,故正方形是自相似图形.

    任务:

    (1) 图1中正方形ABCD分割成的四个小正方形中,每个正方形与原正方形的相似比为
    (2) 如图2,已知△ABC中,∠ACB=90°,AC=4,BC=3,小明发现△ABC也是“自相似图形”,他的思路是:过点C作CD⊥AB于点D,则CD将△ABC分割成2个与它自己相似的小直角三角形.已知△ACD∽△ABC,则△ACD与△ABC的相似比为
    (3) 现有一个矩形ABCD是自相似图形,其中长AD=a,宽AB=b(a>b).

    请从下列A、B两题中任选一条作答.

    A:①如图3﹣1,若将矩形ABCD纵向分割成两个全等矩形,且与原矩形都相似,则a=(用含b的式子表示);

    ②如图3﹣2若将矩形ABCD纵向分割成n个全等矩形,且与原矩形都相似,则a=(用含n,b的式子表示);

    B:①如图4﹣1,若将矩形ABCD先纵向分割出2个全等矩形,再将剩余的部分横向分割成3个全等矩形,且分割得到的矩形与原矩形都相似,则a=(用含b的式子表示);

    ②如图4﹣2,若将矩形ABCD先纵向分割出m个全等矩形,再将剩余的部分横向分割成n个全等矩形,且分割得到的矩形与原矩形都相似,则a=(用含m,n,b的式子表示).

  • 25. 如图1,在平面直角坐标系中,一次函数y=﹣2x+8的图象与x轴,y轴分别交于点A,点C,过点A作AB⊥x轴,垂足为点A,过点C作CB⊥y轴,垂足为点C,两条垂线相交于点B.

    (1) 线段AB,BC,AC的长分别为AB=,BC=,AC=
    (2) 折叠图1中的△ABC,使点A与点C重合,再将折叠后的图形展开,折痕DE交AB于点D,交AC于点E,连接CD,如图2.请从下列A、B两题中任选一题作答,我选择题.

    A:①求线段AD的长;

    ②在y轴上,是否存在点P,使得△APD为等腰三角形?若存在,请直接写出符合条件的所有点P的坐标;若不存在,请说明理由.

    B:①求线段DE的长;

    ②在坐标平面内,是否存在点P(除点B外),使得以点A,P,C为顶点的三角形与△ABC全等?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.

试题篮