基于电容器的制动能量回收系统已经在一些品牌的汽车上得到应用。简易模型如图所示。某种材料制成的薄板质量为m,围成一个中空圆柱,半径为 r,薄板宽度为L,可绕过圆心O的水平轴垂直于圆面转动。薄板能够激发沿半径方向向外的辐射磁场,磁场只分布于薄板宽度的范围内,薄板外表面处的磁感应强度为B。一匝数为n的线圈 abcd 固定放置(为显示线圈绕向,图中画出了两匝), ab 边紧贴薄板外表面但不接触,线圈的两个线头c点和d点通过导线连接有电容为C的电容器、电阻为R的电阻、单刀双掷开关,如图所示。现模拟一次刹车过程,开始时,单刀双掷开关处于断开状态,薄板旋转方向如图所示,旋转中薄板始终受到与薄板表面相切,与运动方向相反的大小为f的刹车阻力作用,当薄板旋转的角速度为

时,将开关闭合到位置1,电容器开始充电,经时间t电容器停止充电,开关自动闭合到位置2,直至速度减为零。除刹车阻力外,忽略其他一切阻力,磁场到 cd 连线位置时足够弱,可以忽略。电容器的击穿电压足够大,开始时不带电,线圈能承受足够大的电流,不考虑磁场变化引起的电磁辐射。
(1)电容器充电过程中,判断极板M带电的电性;
(2)求充电结束时,薄板的角速度
大小;
(3)求薄板运动的整个过程中该系统的能量回收率。
