试题 试卷
题型:单选题 题类: 难易度:普通
重庆市万州区2023-2024学年八年级上学期期末数学试题
如图①,一个无盖的正方体盒子的棱长为6厘米,顶点C1处有一只昆虫甲,在盒子的内部顶点A处有一只昆虫乙.(盒壁的厚度忽略不计)(1)假设昆虫甲在顶点C1处静止不动,如图①,在盒子的内部我们先取棱BB1的中点E , 再连结AE、EC1 . 昆虫乙如果沿路径A→E→Cl 爬行 , 那么可以在最短的时间内捕捉到昆虫甲.仔细体会其中的道理,并在图①中画出另一条路径,使昆虫乙从顶点A沿这条路径爬行,同样可以在最短的时间内捕捉到昆虫甲.(请简要说明画法)(2)如图②,假设昆虫甲从顶点C1以1厘米/秒的速度沿盒子的棱C1D1向D1爬行,同时昆虫乙从顶点A以2.5厘米/秒的速度在盒壁上爬行,那么昆虫乙至少需要多长时间才能捕捉到昆虫甲?
正方体盒子的棱长为2,BC的中点为M,一只蚂蚁从A点爬行到M点的最短距离为( )
如图,圆锥的轴截面是边长为6cm的正三角形ABC,P是母线AC的中点.则在圆锥的侧面上从B点到P点的最短路线的长为{#blank#}1{#/blank#}
如图,有一只蚂蚁从一个圆柱体的A点沿着侧面绕圆柱至少一圈爬到B点,已知圆柱的底面半径为1.5cm,高为12cm,则蚂蚁所走过的最短路径是多少?(π取3)
试题篮