试题 试卷
题型:阅读理解 题类: 难易度:普通
【学霸】浙教版数学八下4.6反证法
题目:在Rt△ABC中,∠C=90°,若∠A≠45°,所以AC≠BC.
证明:假设AC=BC,因为∠A≠45°,∠C=90°,所以∠A≠∠B.
所以AC≠BC,这与假设矛盾,所以AC≠BC.
上面的证明有没有错误?若没有错误,指出其证明的方法;若有错误,请予以纠正.
①∠A+∠B+∠C=90°+90°+∠C>180°,这与三角形内角和为180°相矛盾,则∠A=∠B=90°不成立;②所以一个三角形中不能有两个直角;③假设∠A,∠B,∠C中有两个角是直角,不妨设∠A=∠B=90°.正确顺序的序号排列为{#blank#}1{#/blank#}
求证:在中,如果它含直角,那么它只能有一个直角.
下面写出运用反证法证明这个命题的四个步骤:
①∴ , 这与“三角形内角和等于”相矛盾.
②因此,三角形有两个(或三个)直角的假设不成立.
∴如果三角形含直角,那么它只能有一个直角.
③假设有两个(或三个)直角,不妨设 .
④∵ ,
这四个步骤正确的顺序应是( )
试题篮