题型:解答题 题类:模拟题 难易度:普通
2017年河北省石家庄二中高考数学三模试卷(理科)
日期 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
天气 | 晴 | 霾 | 霾 | 阴 | 霾 | 霾 | 阴 | 霾 | 霾 | 霾 | 阴 | 晴 | 霾 | 霾 | 霾 |
日期 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
天气 | 霾 | 霾 | 霾 | 阴 | 晴 | 霾 | 霾 | 晴 | 霾 | 晴 | 霾 | 霾 | 霾 | 晴 | 霾 |
由于此种情况某市政府为减少雾霾于次年采取了全年限行的政策.
下表是一个调査机构对比以上两年11月份(该年不限行30天、次年限行30天共60天)的调查结果:
表二
不限行 | 限行 | 总计 | |
没有雾霾 | a | ||
有雾霾 | b | ||
总计 | 30 | 30 | 60 |
(由于不能使用计算器,所以表中数据使用时四舍五入取整数)
P(K2≥k) | 0.100 | 0.050 | 0.010 | 0.001 |
k | 2.706 | 3.841 | 6.635 | 10.828 |
.
(Ⅰ)根据题目条件完成下面2×2列联表,并据此判断是否有99%的把握认为环保知识成绩优秀与学生的文理分类有关.
优秀人数 | 非优秀人数 | 总计 | |
甲班 | |||
乙班 | 30 | ||
总计 | 60 |
(Ⅱ)现已知A,B,C三人获得优秀的概率分别为 ,设随机变量X表示A,B,C三人中获得优秀的人数,求X的分布列及期望E(X).
附: ,n=a+b+c+d
P(K2>k0) | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
参考数据:
P(K2≥k) |
0.050 |
0.025 |
0.010 |
0.005 |
0.001 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
,其中 .
服务时间超过1小时 | 服务时间不超过1小时 | |
男 | 20 | 8 |
女 | 12 | m |
(Ⅰ)求 ;
(Ⅱ)将表格补充完整,并判断能否有95%的把握认为该校学生一周参加社区服务时间是否超过1小时与性别有关?
服务时间超过1小时 | 服务时间不超过1小时 | 合计 | |
男 | 20 | 8 | |
女 | 12 | m | |
合计 |
(Ⅲ)以样本中学生参加社区服务时间超过1小时的频率作为该事件发生的概率,现从该校学生中随机调查6名学生,试估计6名学生中一周参加社区服务时间超过1小时的人数.
附:
| 0.050 | 0.010 | 0.001 |
| 3.841 | 6.635 | 10.828 |
分数 |
|
|
|
|
|
|
|
甲班频数 |
|
|
|
|
|
|
|
乙班频数 |
|
|
|
|
|
|
|
(Ⅰ)由以上统计数据填写下面的 列联表,并判断是否有 以上的把握认为“成绩优秀与教学方式有关”?
甲班 | 乙班 | 总计 | |
成绩优秀 | |||
成绩不优秀 | |||
总计 |
(Ⅱ)现从上述样本“成绩不优秀”的学生中,抽取 人进行考核,记“成绩不优秀”的乙班人数为 ,求 的分布列和期望.
参考公式: ,其中 .
临界值表
|
|
|
|
|
|
|
|
|
|
试题篮