试题 试卷
题型:解答题 题类:真题 难易度:普通
2017年北京市中考数学试卷
(以上材料来源于《古证复原的原理》、《吴文俊与中国数学》和《古代世界数学泰斗刘徽》)
请根据该图完成这个推论的证明过程.
证明:S矩形NFGD=S△ADC﹣(S△ANF+S△FGC),S矩形EBMF=S△ABC﹣(+).
易知,S△ADC=S△ABC , =,=.
可得S矩形NFGD=S矩形EBMF .
如图,△ABC和△DBC是两个具有公共边的全等三角形,AB=AC=3cm.BC=2cm,将△DBC沿射线BC平移一定的距离得到△D1B1C1 , 连接AC1 , BD1 . 如果四边形ABD1C1是矩形,那么平移的距离为{#blank#}1{#/blank#} cm.
如图,在矩形ABCD中,E是AD边的中点,BE⊥AC于点F,连接DF,分析下列五个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=;⑤S四边形CDEF=S△ABF , 其中正确的结论有( )
已知矩形OABC的顶点O(0,0)、A(4,0)、B(4,-3).动点P从O出发,以每秒1个单位的速度,沿射线OB方向运动.设运动时间为t秒.(1)求P点的坐标(用含t的代数式表示);(2)如图,以P为一顶点的正方形PQMN的边长为2,且边PQ⊥y轴.设正方形PQMN与矩形OABC的公共部分面积为S,当正方形PQMN与矩形OABC无公共部分时,运动停止.①当t<4时,求S与t之间的函数关系式;②当t>4时,设直线MQ、MN分别交矩形OABC的边BC、AB于D、E,问:是否存在这样的t,使得△PDE为直角三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.
试题篮