试题 试卷
题型:综合题 题类:真题 难易度:普通
2017年黑龙江省哈尔滨市中考数学试卷
如图,在正方形ABCD中,E为DC边上的点,连接BE,将ΔBCE绕点C顺时针方向旋转90°得到ΔDCF,连接EF,若∠BEC=60°,则∠EFD的度数为
如图①,△ABC与△DEF都是等腰直角三角形,∠ACB=∠EDF=90°,且点D在AB边上,AB、EF的中点均为O,连结BF、CD、CO,显然点C、F、O在同一条直线上,可以证明△BOF≌△COD,则BF=CD.
解决问题
如图,点E是BC的中点,AB⊥BC , DC⊥BC , AE平分∠BAD , 下列结论:
①∠AED=90° ②∠ADE=∠CDE ③DE=BE④AD=AB+CD , 四个结论中成立的是( )
(Ⅰ)求图1中,A,B,D三点的坐标;
(Ⅱ)Rt△AOB固定不动,Rt△CED沿x轴以每秒2个单位长的速度向右运动,当D点运动到与B点重合时停止,设运动x秒后Rt△AOB和Rt△CED的重叠部分面积为y,求y与x之间的函数关系式;
(Ⅲ)当Rt△CED以(Ⅱ)中的速度和方向运动,运动时间x=4秒时Rt△CED运动到如图2所示的位置,求点G的坐标.
试题篮