试题
试题
试卷
登录
注册
当前位置:
首页
题型:填空题
题类:真题
难易度:普通
2011年浙江省温州市中考数学试卷
我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S
1
, S
2
, S
3
, 若S
1
+S
2
+S
3
=10,则S
2
的值是
.
举一反三
勾股定理被誉为“几何明珠”,在数学的发展历程中占有举足轻重的地位.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入长方形内得到的,∠BAC=90°,AB=3,AC=4,点D、E、F、G、H、I 都在长方形KLMJ的边上,则长方形KLMJ的面积为( )
我们运用图(Ⅰ)中大正方形的面积可表示为(a+b)
2
, 也可表示为c
3
+4(
ab),即(a+b)
2
=c
2
+4(
ab)由此推导出一个重要的结论a
2
+b
2
=c
2
, 这个重要的结论就是著名的“勾股定理”.这种根据图形可以极简单地直观推论或验证数学规律和公式的方法,简称“无字证明”.
三国时期吴国赵爽创造了“勾股圆方图”(如图)证明了勾股定理,在这幅“勾股圆方图”中,大正方形ABCD是由4个全等的直角三角形再加上中间的一个小正方形EFGH组成的,已知小正方形的边长是2,每个直角三角形的短直角边长是6,则大正方形ABCD的面积是{#blank#}1{#/blank#}.
“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若(a+b)
2
=21,大正方形的面积为13,则小正方形的面积为( )
勾股定理是“人类最伟大的十个科学发现之一”,我国对勾股定理得证明是由汉代的赵爽在注解《周髀算经》时给出的,他用来证明勾股定理得图案被称为“赵爽弦图”.2002年在北京召开的国际数学大会选它作为会徽.下列图案中是“赵爽弦图”的是( )
我国数学家华罗庚曾建议,用一副反应勾股定理的数形关系图来作为和外星人交谈的语言,就勾股定理本身而言,它揭示了直角三角形的三边之间的关系,它体现的数学思想方法是( )
返回首页
相关试卷
新疆维吾尔自治区和田地区墨玉县2024-2025学年九年级上学期10月期中考试数学试题
四川省达州市达川第四中学2024-2025学年七年级上学期期中考试数学试卷
广西河池市凤山县2024-2025学年九年级上学期10月检测数学试题
四川省眉山市仁寿县2024-2025学年九年级上学期11月期中考试数学试卷
云南省文山壮族苗族自治州广南县广南县第三中学校2024-—2025学年八年级上学期10月期中数学试题
试题篮
编辑
生成试卷
取消
登录
x
请输入网站账号/手机号码/邮箱
请输入密码
自动登录
忘记密码
登录
其它登录方式:
免费注册