试题 试卷
题型:单选题 题类:模拟题 难易度:困难
2017年山东省济南市市中区中考数学一模试卷
如图,直线y= 与y轴交于点A,与直线y=﹣ 交于点B,以AB为边向右作菱形ABCD,点C恰与原点O重合,抛物线y=(x﹣h)2+k的顶点在直线y=﹣ 上移动.若抛物线与菱形的边AB、BC都有公共点,则h的取值范围是( )
在平面直角坐标系xOy中,矩形OABC过原点O,且A(0,2)、C(6,0),∠AOC的平分线交AB于点D.(1)直接写出点B的坐标;(2)如图,点P从点O出发,以每秒个单位长度的速度沿射线OD方向移动;同时点Q从点O出发,以每秒2个单位长度的速度沿x轴正方向移动.设移动时间为t秒.①当t为何值时,△OPQ的面积等于1;②当t为何值时,△PQB为直角三角形;(3)已知过O、P、Q三点的抛物线解析式为y=-(x-t)2+t(t>0).问是否存在某一时刻t,将△PQB绕某点旋转180°后,三个对应顶点恰好都落在上述抛物线上?若存在,求出t的值;若不存在,请说明理由.
试题篮