试题

试题 试卷

logo

题型:综合题 题类:常考题 难易度:普通

如图1,点O是弹力墙MN上一点,魔法棒从OM的位置开始绕点O向ON的位置顺时针旋转,当转到ON位置时,则从ON位置弹回,继续向OM位置旋转;当转到OM位置时,再从OM的位置弹回,继续转向ON位置,…,如此反复.按照这种方式将魔法棒进行如下步骤的旋转:第1步,从OA0(OA0在OM上)开始旋转α至OA1;第2步,从OA1开始继续旋转2α至OA2;第3步,从OA2开始继续旋转3α至OA3 , ∁….

例如:当α=30°时,OA1 , OA2 , OA3 , OA4的位置如图2所示,其中OA3恰好落在ON上,∠A3OA4=120°;

当α=20°时,OA1 , OA2 , OA3 , OA4 , OA3的位置如图3所示,

其中第4步旋转到ON后弹回,即∠A3ON+∠NOA4=80°,而OA3恰好与OA2重合.

(1)、若α=35°,在图4中借助量角器画出OA2 , OA3 , 其中∠A3OA2的度数是 ;

(2)、若α<30°,且OA4所在的射线平分∠A2OA3 , 在如图5中画出OA1 , OA2 , OA3 , OA4并求出α的值

(3)、若α<36°,且∠A2OA4=20°,则对应的α值是 

(4)、当OAi所在的射线是∠AiOAk(i,j,k是正整数,且OAj与OAk不重合)的平分线时,旋转停止,请探究:试问对于任意角α(α的度数为正整数,且α=180°),旋转是否可以停止?写出你的探究思路.

返回首页

试题篮