试题 试卷
题型:证明题 题类:常考题 难易度:普通
如图,△ABC中,∠B=90°,AB=6 cm,BC=8 cm.将△ABC沿射线BC方向平移10 cm,得到△DEF,A,B,C的对应点分别是D,E,F,连结AD.求证:四边形ACFD是菱形.
如图,在平面直角坐标系中,O为坐标原点,点A、B的坐标分别为(8,0)、(0,6).动点Q从点O、动点P从点A同时出发,分别沿着OA方向、AB方向均以1个单位长度/秒的速度匀速运动,运动时间为t(秒)(0<t≤5).以P为圆心,PA长为半径的⊙P与AB、OA的另一个交点分别为C、D,连接CD、QC.(1)求当t为何值时,点Q与点D重合?(2)设△QCD的面积为S,试求S与t之间的函数关系式,并求S的最大值;(3)若⊙P与线段QC只有一个交点,请直接写出t的取值范围.
①∠EBG=45°;②△DEF∽△ABG;③S△ABG= S△FGH;④AG+DF=FG.
其中正确的是{#blank#}1{#/blank#}.(把所有正确结论的序号都选上)
实例一:1876年,美国总统伽非尔德利用实例一图证明了勾股定理:由S四边形ABCD=S△ABC+S△ADE+S△ABE得: (a+b)2=2× ab+ c2 , 化简得:a2+b2=c2.
实例二:欧几里得的《几何原本》记载,关于x的方程x2+ax=b2的图解法是:画Rt△ABC,使∠ACB=90°,BC= ,AC=|b|,再在斜边AB上截取BD= ,则AD的长就是该方程的一个正根(如实例二图).
请根据以上阅读材料回答下面的问题:
试题篮