试题 试卷
题型:解答题 题类:常考题 难易度:普通
在四边形ABCD中,∠B=∠D=90°,∠A=120°,AB=3,AD=6,延长DA,CB相交于点E. ①.求Rt⊿DCE的面积; ②.求四边形ABCD的面积.
如图1,在等腰Rt△ACB中,∠ACB=90°,AC=BC;在等腰Rt△DCE中,∠DCE=90°,CD=CE;点D、E分别在边BC、AC上,连接AD、BE,点N是线段BE的中点,连接CN与AD交于点G.
(1)若CN=6.5,CE=5,求BD的值.
(2)求证:CN⊥AD.
(3)把等腰Rt△DCE绕点C转至如图2位置,点N是线段BE的中点,延长NC交AD于点H,请问(2)中的结论还成立吗?若成立,请给出证明;若不成立,请说明理由.
试题篮