试题 试卷
题型:单选题 题类:常考题 难易度:普通
黑龙江省哈尔滨市第六中学2019-2020学年高二上学期理数10月份阶段性总结试卷
如图所示,已知椭圆C: + =1(a>b>0)的焦距为2,直线y=x被椭圆C截得的弦长为 .
(Ⅰ)求椭圆C的方程;
(Ⅱ)设点M(x0 , y0)是椭圆C上的动点,过原点O引两条射线l1 , l2与圆M:(x﹣x0)2+(y﹣y0)2= 分别相切,且l1 , l2的斜率k1 , k2存在.
①试问k1•k2是否定值?若是,求出该定值,若不是,说明理由;
②若射线l1 , l2与椭圆C分别交于点A,B,求|OA|•|OB|的最大值.
(Ⅰ)求椭圆C的方程及焦距.
(Ⅱ)椭圆C的左焦点为F1 , 右顶点为A,经过点A的直线l与椭圆C的另一交点为P.若点B是直线x=2上异于点A的一个动点,且直线BF1⊥l,问:直线BP是否经过定点?若是,求出该定点的坐标;若不是,说明理由.
试题篮